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A dynamical system is constructed in the multiplicative group of the quartemion algebra H that serves as the configuration space. 
A homomorphism H ~ SO(3) is used such that the unit sphere S 3 C H, invariant under the system, is transformed into the rotation 
group SO(3). The homornorphic image of the system is identical with the dynamics of rotational motion of a rigid body. The 
equations of motion are cc,mpletely integrated in the Euler case. To this end Weierstrass' elliptic functions are used. The following 
goals are achieved within the framework of the method: (a) when representing the algorithms for modelling the dynamics it 
suffices to use only one chart from the atlas of the phase space manifold, (b) the point in the configuration space of the actual 
motion lies on the unit sphere, which ensures the best accuracy in numerical procedures, and (e) in the majority of applications 
the fight-hand sides of the equations of perturbed motion depend polynomially on the phase variables, which simplifies the use 
of computer algebra in analytic theories. © 1998 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

To construct the equations of perturbed motion in rigid body dynamics it is most convenient from the 
point of view of computations to use a symmetric representation of the configuration space in terms 
of the Rodrigues-Hamilton or Cayley-Klein parameters [14]. 

As the configuration space we shall use the quaternion algebra H[4], the four-dimensional Euclidean 
ace R 4 being the coordinate space. More precisely, the algebra H without the null point, that is, 

= I-I~{0}, is the configuration manifold. This manifold can obviously be covered by a single chart 
R4~{0}. Clearly, M 4 is the multiplicative group of H. It is well known that the group SO(3) of rotations 
in R 3 is the configuration space of a rigid body with a fixed point. The smooth manifold SO(3) is diffeo- 

3 morphic to RP 3 thai: inherits the smooth structure of the sphere S with identified antipodal points. 
The manifold S 3 ca~ be identified with the surface of the unit sphere in R 4 defined by the equation 

Iql 2 = 1 (Iql 2 -- + q2 + q~. q~) (1.1) 

The unit vectors of ~he coordinate axes in R a will be denoted by 1, il, i2, i3, so that an arbitrary vector 
q E R 4 can be represented as 

q = qol + qli I + q 2 i 2  +q3i3  

The quaternion algebra H is defined in R 4 in such a way that Re q = qol is the scalar part of a 
quaternion and Veq = qlil + q2i2 + q3i3 is its vector part. The rotational motion of a rigid body can be 
described by a Lagrangian system on SO 3. This system admits of a well-defined extension to S °, so that 
the kinetic energy and force field are also correctly defined. 

not In the majority of cases the moments of forces do depend on the direction cosines or the angular 
velocities. We shall extend the force field from S 3 to M ~ in such a way that the components of the generalized 
forces at a point on a sphere S 3 of arbitrary radius R will be equal to the corresponding components at 
the point on the unit sphere S ~= S] that belongs to the same ray issuing from the origin in I~ 4. 

2. EQUATIONS OF MOTION 

In M 4 we introduce a local curvilinear coordinate system by the formulae 
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= e °q~ COS Or2 C O S  (gl + 1~3 • {X2 0tl - -  1~3 2 , ql = e~° sin--cos q0 2 2 2 

q2 ---- e~' s in 'S - s in  a l  -a ,~  q3 = e a °  cos a2 sin al  +a3 (2.1) 
2 2 ' 2 2 

ao ~(0,**), a2 ~[0,n), a,,a3 E[O,2~) 

Then the parameters al, a2, a3 on S 3 (and also on SO(3) -~ RP 3) can be interpreted as the Euler 
angles: precession, nutation and rotation, respectively. The orthogonal transition matrix U from the 
stationary system coordinates of O{1, ~2, ~3 to the system Oxl,x2,x3 attached to the body (the rigid body 
having a fixed point O) is given by 

U = T3(al)Tt (ffa)T3(a3) 

where the matrices 

[ i  0 0 i - I  csi°nsO - s i n a  !1 Tl(a)= eosa - s i n a ,  T3(a) cosa 
sin a c o s a  | 0 

correspond to rotation by an angle a about the first and third coordinate axes. The columns of U are 
formed by the coordinates of the basis vectors of the stationary system OXl, x2, x3 relative to the system 
O~z, ~2, ~3. We assume that OXl,X2,X3 are the principal axes of inertia. The elements of U are the direction 
cosines such that 

. ~q~ + q 2 _ q ~ _ q ~  

V(q) = lq"~" 1 2(qoq3+q,q2) 
I I  I 2(q, qa-qoq2) 

2(qlq2 - q0q3) 
q0 z - ql 2 + q2 2 - q2 

2(q0ql + q2q3) 

2(qlq, +q0q2) II 
2(q2q, - qoql ) II 

q20 - q21 - q~ + q23 I[ 
(2.2) 

a l . + l ] q o + i q l  q2 +i.q3] 
h : .! Iql[l-q2 + iq3 qo - tql II 

The map h is a diffeomorphism on the unit sphere S 3 C H. It is well known [5] that there is a homo- 
morphism o : SU(2) ~ SO(3), which ensures a two-sheeted covering of SO(3) by the group SU(2), the 
kernel of which consists of two elements: kera = {E, - E}. As a result, we obtain a homomorphism 
such that the diagram 

h 
H > 

commutes. 

SU (2) 

$° 
so (3) 

Following [6, 7], we introduce the quasivelocities COo, ml, o~2, to3 by the formula 

~o~ql S*(q)q" 

r'O01 [ i i - - q l - q 2  I-q3[[ Iq01 
- (°l S ( q ) =  qo -q3 q2 _ qi 

t o -  co2' q3 q0 II' q" -ql - q~ 
11(°311 |q3 -q2 ql q0 q~ 

(2.3) 

Note that U(q) depends only on the points q/[ q [ ~ S 3. 
We know [4] that the transformation g : q ~ U(q) defines a two-sheeted covering g : S 3 ~ SO(3), 

which can be extended to a group homomorphism g : H ---> SO(3). 
Indeed, by analogy with [4], we define a homomorphism h : H ~ SU(2) from the multiplicative group 

of the quaternion algebra to the special unitary group as follows: 
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(the asterisk denotes transposition). Then the kinetic energy of the mechanical system can be computed 
in the form [6] 

T:-'l(A¢o,¢o); A=diag(Ao ,A i ,A2 ,A3)  , A o = I ( A I  + A 2 + A ~ )  (2.4) 

where A is the matrix of the tensor of 'inertia', A1, A2, A3 and the moments of inertia about the axes 
Oxx, Ox2, Ox3; and where (., .) denotes the scalar product in R 4. 

If M1, M2, M3 are the projections of the principal moment of forces acting on the body on to the axes 
Oxl, Ox2, Ox3, then the Lagrange equations of the second kind are equivalent to the extended system 
of Euler dynamic equations 

I" + 1 ( ¢ o o I - I  o to )=M (2.5) 

The vector I - Ato consists of the components of the moment-of-momentum vector, M = (0, M1, 
ME, M3), and the centred degree symbol denotes group multiplication in the algebra H. We need to 
supplement (2.5) by a system resembling the kinematic equations. 

1 
q" =~-q °to (2.6) 

The advantage of system (2.5), (2.6) is that it has the Cauchy form and the right-hand sides depend 
polynomially on qk, tOk (k = 0, 1, 2, 3). In applications the moments Mk (k = 0, 1, 2, 3) are often poly: 
nomial functions of the direction cosines. By (2.2) the right-hand sides of (2.5) contain terms with Iql -" 
as a multiplier. However, it should be observed that real motion takes place on the configuration submanifold 
(1.1). 

Manifolds of the form I q 1-2 = const are invariant under the dynamical system (2.5), (2.6). In other 
words, (1.1) is an invariant relation. Clearly, if I q I = 1 is substituted everywhere into the right-hand 
sides of (2.5), the resulting dynamical system will be identical with the original one on (1.1), i.e. it will 
describe the dynamic,s of a rigid body. 

Therefore, the following result holds. 

Proposition. If the raoments of forces are polynomial functions of the direction cosines and the com- 
ponents of the angular velocity, then the dynamic and kinematic Euler equations admit of an extension 
involving the Rodrigues--Hamilton parameters, for which they attain the Cauchy form with polynomial 
right-hand sides. 

The canonical for~a of the equations of motion may turn out to be useful in modelling problems. 
Using a Legendre transformation one can obtain an expression for the generalized moments [6] 

P= ( Po, Pi, P2, P3 )* = 2S(q)I/Iql 2 

Then the quasivelocifies can be expressed in terms of the canonical variables as 

1 , I = ~ S  (q)p (2.7) 

Substituting (2.7) into (2.4), we obtain an expression for the kinetic energy 

T = (8 A 0 )"'(qoPo + q|P, + q2P2 + q3P3 )2 + (8A,)-I (-qlPo + qoP| + qaP2 - q2P3 )2 + 

+(8 A 2)-! (-q2Po - q3Pl + qoP2 + q|P3 )2 + (8A3)-| (-qaP0 + q2P! - qlP2 + qoP3 )2 

The generalized forces can also be represented as 

Q =  ( Qo , Q, , Q2 , Q3 )* = 2S(q)M/lql 2 

As a result, the system of Hamilton equations takes the form 

q't = 3T I OPk, Pk = -OT / ~qk + Qt, k = 0,1,2, 3 (2.8) 
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In what follows we shall assume that there is a force function V(q) such that 

Qk=OV/Oqk, k=0 ,  1,2,3 

In this case the Hamilton function 

H(q, p) = T(q, p) + V(q) 

exists. 
By. (2.7) we can use the convector I ~ T~,M 4 instead of the covector p ~ T~dM 4 in the phase space 

T*M ~ for a fixed q e 344. We shall use two s~ymbols for the Hamilton function 1 

H(q, p) = F(q, I) 

By lengthy transformations one can obtain the system of different equations 

i 
q .  I10  1S (q ) } l  Uap/ qll 

(2.9) 

li °°  o°1 o - h  
P(1) = 2 /3 0 -11 

- I  2 I! 

Remark. Equations (2.8) and (2.9) also admit of the transformation described in the proposition. Namely, putting 
[ q [ equal to unity in the denominators in Qk (k = 0, 1, 2, 3), we can obtain a polynomial dependence of the 
generalized forces on the coordinates and momenta without distorting the motion. We then obtain a dynamical 
system in M 4, which differs, in general, from (2.8). For example, if Qk admit of a force function, the new generalized 
forces do not have to be potential ones. However, this is unimportant from the viewpoint of using semianalytic 
and projection methods [8] for the approximate construction of solutions. 

3. I M B E D D I N G  

We shall establish a duality between the dynamical system under consideration and the system on 
SO(3), defining the dynamics of a rigid body in the standard way. It can be verified that quasivelocities 
(2.3) can be represented as follows with the aid of (2.1): 

~o = B(~)~" 

I 2 0 0 0 ] lab 0 sin {x 2 sin a 3 cosa  3 0 _ ai  
B(ot)= 0 - s ina2  cosa  3 s ina 3 0 , a" - a~ 

0 cos~ 2 0 1 tx~ 

Hence one can see that a l ,  a2, ~'3 are simply the angular velocities of precession, nutation and rotation, 
respectively. 

Using a Legendre transformation or ~--> 13, where 

[$=~TI~ot'=B*ABIx', a'=B-IA-I(B-I)*[$ 
the kinetic energy can be expressed in terms of the generalized momenta 13. We have (cf. [9, i0]) 

T=I[B-'A-'(B-')*f$,[$1-l 2 ~AI0~ sina' " 
- ~ o  l~o + , sina"-"~ +I~, cosa3 - 

- ~ ' 3 '  Sina2 + I s i n a : " -  sina3-1~3 sina2 +k,~3133 (3.1) 
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Since the force function V is independent of ~ and so moreover depends on the direction cosines, 
which are one-to-one functions on SO(3), it follows that this variable is cyclic by (3,1). Therefore, the 
equations of motion can be separated with respect to the variables ~k, 13k (k = 1, 2, 3) and have the 
form known in rigid body dynamics. As a consequence, any sphere S~ C ~r~ will be an invariant manifold. 
We recall that the local map g : S a ~ SO(3) is a diffeomorphism. Unlike SO(3), the motion in M 4 can 
be described globally iin a single chart, namely, M 4 itself. This entails the absence of any defects of the 
charts of the configuration space SO(3) described by the angles of orientation angles of the body (Euler, 
aircraft, etc.). As the solution approaches the boundary of such a chart it becomes necessary to change 
to a new chart in which to describe the motion by more regular functions. 

4. THE EULER CASE 

Let (q0, i 0) be the pMse space vector at the initial instant of time t = t 0. Bearing in mind applications 
in perturbation theory, we shall find formulae ensuring that this vector can be computed in the course 
of the motion: (q0, 1~ ~ (q(t), l(t)). In the Euler case M(t) -- 0. Therefore, the dynamical equation 
can be obtained from (2.5) in the form [11] 

t =o 

li=ail213, al =(A2-A3)I(A2A3) (I 2 3) (4.1) 

The first equation immediately gives the integral Io(t) = I°o corresponding to the cyclic variable o.0. 
We shah consider the generic case when all principal moments of inertia are pairwise distinct: ak 

0 (k = 1, 2, 3). Then the last three equations in (4.1) can be represented in the following traditional 
form 

Using the differential equation 

4..d.. 4 = = 13dl3 = l,t 13a, 

al a2 a3 

ax/at = #lt2h (4.2) 

we introduce the new independent variable, x, which easily enables us to obtain the quadratures 

I~ -- 2a~'c +(¢)2 ,  k--1,2,3 (4.3) 

To fix our ideas, we ~ill assume that x is equal to zero at the initial time x0. For x(t) we have Eq. (4.2) 
in the form 

(~tt)  2 -(2aix+(l°)2)(2a2"f+(l°2)2)(2a3x+(I~) 2) (4.4) 

Changing to the new independent variable u = (2ala2a3)l/2t, we obtain the equation 

(~u) z --4('c-ei)(x-e~)(x-e3) (4.5) 

e k =e .k -e ,  I~ k = - ( l ° ) l D a l : ,  k=1,2,3, e=(~,, +~2 +'~3)/3 

defining a doubly periodic meromorphic (elliptic) function of the complex argument, namely, the Weier- 
strass ~a-function [12] '~ = ~a(u) such that the half-periods ¢o and co' can be defined by the following equations 

#(o~)--e i, /o(to')=e 2, ~ ( o + t o ' ) = e  3 

The solution of Eq. (4.4) can therefore be given as 

x =~((2aia.za3)~ t + Uo ) 
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where u0 is chosen in such a way tha t  ~o((2ala2a3)l:2t0 + Uo) = --e. 
In the case when one of the quantities ak ---- 0, the corresponding component of the moment-of- 

momentum vector is constant: Ik(t) = ~.  Suppose, for example, that a3 = 0. Then the case of dynamic 
symmetryA1 = A2 occurs. The second and third equations in (4.1) describe the uniform rotation of the 
moment-of-momentum vector about the axis Ox 3 and can be reduced to the form 

I i = - a I  2, l~=al  1 (af(A3-A,)I(A3A,)I °) 

The solution of the Cauchy problem for this system is known to be 

[1 1,11 ]]cosat -sinatl I :1  
112ll=Usinat cosa  U I1 °1 

In the generic situation a k ;~ 0 (k = 1, 2, 3) the components of the moment-of-momentum vector 
(the solution of the Cauchy problem for (4.1)) can be represented in terms of the theta-functions [12] 

Ik =[2am(p(u)-ek)] ~ = O; (o)ok+~ (v) u 
2¢~Ot+l(O)Ot(v ) , k=1,2,3; 04 -'-Oo, v = 2o~ 

In these formulae the dependence on the initial data is realized through the parameters co and co', which, 
in turn, can be uniquely expressed in terms ofek (k = 1, 2, 3) [12]. 

Proceeding to the discussion of the kinematic equations (2.6), in what follows we shall assume that the 
quasiveloeities cok(t) (k = 1, 2, 3) are unknown functions of time. In the Euler case cot(t) are either constant 
(permanent rotations) or asymptotic (separatrices) or periodic (generic Situation) functions of time. 

Following tradition, we shall use the angular momentum integral. In H it has the form 

q oIoq-I  =I01 +G, G=Glil+G2i2+G3i3 

(the quaternion G consists of the components of the moment-of-momentum vector projected on to the 
stationary axes). Using (2.5) and (2.6), it is easy to check by direct differentiation that G is constant. 
This quaternion can be computed in terms of the initial data by 

G = q ° o I ° o ( q ° )  - I - ~ l  

We shall change to a new stationary of system coordinates in which the unit quaternion g = glil + g2i2 
+ g3i3 = GIG (G = [ G [) coincides with the third coordinate unit vector. To this end it suffices to 
perform two rotations of the original trihedron: by the precession angle ~ and by the nutation angle 0 
determined from the equations 

cosy  = - (g, iz), sinw = (g, it); c o s O -  (g, i  3), sinO = ( 1 - c o s  z O) ~ 

We know [4] that the quaternion of the transition to the new stationary system of coordinates can 
be computed from 

where exp(aj) = cosal + sinN is the quaternion corresponding to the rotation by 2a about j. Then 
the formulae for the transition to the half-angle should be used. 

Now, to describe the motion with respect to the new stationary system of coordinates we should use 
the homomorphism g : H --+ SO(3) to change in (2.6) to a new unknown ftmetion z such that q = a .  z. 
Since the quaternion a is constant, z(0 satisfies the linear equation (2.6), just as q(t) does. The initial 
conditions for the desired solution of the Cauchy problem should be stated in the form 

zO= a-t o qO 

where a -1 =/~ since a ~ S 3, where the bar denotes the complex conjugate. 
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To complete the integration process it remains to complete one quadrature. To do this we represent the 
integral for the conservation of moment of momentum in the moving of system coordinates in the form 

z -t oi3 oz=i ( t ) ,  i ( t )= yli I + Y2i2 + Y3i3 =(I(t)-lOl)/G (4.6) 

(the unit quaternion i(t) is a unit vector defining the direction of the moment-of-momentum vector in 
the moving frame). 

For any fixed t the solution of (4.6) is determined, apart from the centralizer St(i3) of i3 ~ H in the 
multiplicative group of  H. All quaternions of the centralizer satisfy the equation 

X -I  o i3  o x = i 3  

and, as can easily be checked, they have the form x = x01 + x3i3, which corresponds to rotation about 
i 3 in the case when I x I = 1. The general solution of (4.6) can be obtained from the formula z = x° 
y, where x ~ St(J3) and y is any partial solution of this equation. 

Indeed, if z is the general solution and y is a partial solution of (4.6), then z -1 o i 3 o z = y - !  o i 3 . y. 
Therefore (z. y-l) .  i3 * (Zo y-l) = i3 ' i.e. (z .  y-l) ~ St(J3)" Fixing some partial solution y(t), we obtain a 
differential equation in St( i3)  , which makes it possible to obtain the desired quadrature. 

Equation (4.6) is equivalent to 

i 3 o z - z  o i ( t )  = 0 

or the linear algebr~tic system 

o - 3-1 
- ~ t 3 + l  0 I Y2 - 0 

11-¥3 +1 -¥2 ' / i  71 Y3 0 

which for "/3 ~ I defines a two-dimensional linear space with basis vectors 

y t = i l _ i  2oi(t),  y 2 = i l + i  aoi( t )  

It follows that any element of this space has the form y --- e + do i(t), where e = y l i l  + y2i2 and d = 
y2il -yl i2  for anyyl,y2 e R. Substituting z = x° (c + d° i(t)), where x into (2.6) and using the identities 

it o q o i t  + i 2 o q o i 2  =-2q01+2q3i3 ,  it o q o i 2 - i  2 o q o i  I =2q31+2q0i3 

we obtain the equation 

x" = x o IS(t), (8(t) = ~(t) l  + ~(t)i3) (4.7) 

where 

= v , ) ]  -'  

We have obtained a differential equation in St(i3), since x(t) e St(J3) for any t. But the centralizer 
St(i3) of  i3 is a subalgebra in H with generators 1, i 3. Therefore, on St(i3) there is a unique structure of 
the field of complex numbers, and St( i3)  = C. 

Equation (4.7) cetn be interpreted in the complex sense so that i 3 = a / -1 .  Commutativity holds and 
the desired quadrature has the form 

t _ c + i ( t o ) O  d 
x( t )=  x° °eXP,oJ(Ct(~)l +~(~)i3)d~, x 0 = z° o le+doi(to)]2 

Note that for a real motion the antiderivative of ct(t) in the last quadrature is a purely periodic function 
in the generic situation. 
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Indeed, for a real motion COo = 0. Therefore 

1 A 1 - A 2 
(~(t)=~ (co2~tl-co~'2)= 2o colco2 

and col(/)~2(t) has zero mean in the Euler case, which can easily be derived because the factors are 
even. 

If, unlike above, the condition y3(t') = 1 is satisfied at some time t', then by the dynamical equations 
(2.5) this condition will be satisfied at any time during the motion, i,e. permanent rotation will occur. 
The identities ~'l(t) -- 0, ~'2(t) -- 0, ~'3(t) -- 1 hold in this case. Therefore, the kinematic equation (2.6) 
takes the form 

and the integral of conservation of moment of momentum is 

Z -I 0i3 o z = i 3  

(4.8) 

This means that z(t) ~ St(i3). As above, Eq. (4.8) can be integrated in the complex sense and the solution 

can be obtained as a uniform rotation about the unit vector i 3. 
I wish to thank A. P. Markeyev for helpful discussions. 
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